
Theor Chim Acta (1991) 79:323-333 Theoretica
Chimica Acta
© Springer-Vertag 1991

D + D 2 Quasiclassical rate constant calculations
on parallel computers

Antonio Laganh 1, Ernesto Gareia 2, Osvaldo Gervasi 3, Ranieri Baraglia 4,
Domenico Laforenza 4, and Raffaele Perego 4
i Dipartimento di Chimica, Universitfi di Perugia, 1-06100 Perugia, Italy
2 Departamento de Quimica Fisica, Universidad del Pais Vasco, Bilbao, Spain
3 Centro di Calcolo, Universitg di Perugia, Perugia, Italy
4 Centro Nazionale Universitario di Calcolo Elettronico, Pisa, Italy

Received October 7, 1990/Accepted November 13, 1990

Summary. The calculation of rate constant values of the H + / / 2 reaction for an
extended range of excited vibrational states of the diatomic molecule and
temperatures is relevant to the modeling of H - sources. To investigate the effect
of isotopic substitutions on the efficiency of vibrational deexcitation processes,
we extended the calculations to the D + D2 system. These calculations were
carried out using a program restructured to run on a shared memory vector and
parallel computer. The dependence of the efficiency of vibrational deexcitation
processes from both the initial vibrational state and temperature of reactants is
reported. Restructuring strategies adopted for implementing the program on
both shared and distributed memory computers as well as speedups achieved on
both types of machines are also discussed.

Key words: Parallel computing - Shared memory - Distributed memory -
Quasiclassical trajectories - Rate constants

1. Introduction

Recently, we presented an extensive quasiclassical trajectory study of the reactive
vibrational deexcitation for [1]:

H + H2(v,j) --*H2(v',j') + n (1)

In fact, although significant theoretical effort has been paid to the investigation
of this system [2-11], still very little is known about the efficiency of reactive
deexcitation when the hydrogen molecule is vibrationally excited. Vibrational
deexcitation of H 2 by collision with H atoms plays an important role in
determining the efficiency of negative hydrogen ion sources. Vibrational deexcita-
tion, in fact, competes with the H - production mechanism (a dissociative
electron attachment to vibrationally excited hydrogen molecules) [12-14]. In a
simplified modeling of the H - source, the assumption that rotational (Trot) and
translational (T,r) temperatures of plasma particles have the same value T, is
usually made. For this reason, rate constants for Eq. (1) were first calculated for
T ranging from 300 K to 4000 K and up to very high v values [13]. The
calculations showed that, in the investigated range of temperature, deexcitation

324 A. Lagang et al.

to the next lower vibrational level is the most efficient process. They also showed
that a temperature increase makes the rate constant larger and that deexcitation
rate constant values can be parameterized as a function of the vibrational jump
n (n = v - v ') .

For a more realistic modeling of the H - sources, Tro~ and T,r need not have
the same value. For this reason, the H +/-/2 calculations of Ref. [1] were made
at different combinations of Tro~ and T~ values. The calculated rate constants
showed that the two temperatures play an opposite role: the rotational temper-
ature enhances the efficiency of the deexcitation processes, while the transla-
tional temperature favours adiabatic processes at the expense of vibrational
deexcitation.

Another important element that a realistic modeling of the H - sources
should include is the effect of isotopic variations. For this reason, we investi-
gated:

D + D2(v,j) ~D2(v ' , j ') + D (2)

In this case too, there is no possibility of getting from the experiment all the
necessary information. This means that the use of extended calculations (as a
numerical substitute of the experiment) is, again, the only viable means of
providing a complete set of rate constant values. At low v values, a few
thousand trajectories are usually needed to obtain a reasonably converged
estimate of the reactive atom-diatom cross section. To have a statistically
significant sample of collisions, this number has to become larger when either
the reactant vibrational number or the temperature increases. The number of
trajectories to be calculated has to be further increased when rate constants
rather than cross sections have to be calculated. That means that a minimum of
5nvnrronr, r 10 3 trajectories (where nv, nTro ,, and nTt r a r e the number of vibra-
tional states, rotational and translational temperatures considered) has to be
calculated.

For calculating the H + H 2 rate constant values reported in Ref. [1] a
number of trajectories of the order of 106 had to be integrated. To extend the
investigation to Eq. (2) the number of calculated trajectories was increased
significantly. This is due to two main reasons: The narrower vibrational spacing
of the D2 molecule and the larger maximum impact parameter bmax. In fact,
because of the narrower vibrational spacing, D2 has about 50% more vibra-
tional levels than H 2. In addition, to have about the same number of trajecto-
ries for each interval of b regardless of the value of b the number of
calculated trajectories was increased when considering higher internal energy
levels.

Therefore, with even stronger motivations than for Eq. (1), we turned
to parallel computers to carry out the planned investigation. In view of
future similar (or computationally more intensive) work, the trajectory pro-
gram was implemented also on parallel machines other than those used
for production runs. Production runs were carried out on IBM and CRAY
supercomputers; test runs were performed also on NCUBE and MEIKO
machines.

The paper is organized as follows: Parallel features of the numerical ap-
proach and speedups obtained on shared-memory machines after parallel re-
structuring are given in Sect. 2. Parallel restructuring for distributed-memory
architectures is discussed in Sect. 3. Rate constant values calculated for Eq. (2)
are discussed in Sect. 4.

D + D 2 Quasiclassical rate constant calculations on parallel computers 325

2. Parallelism in trajectory codes

The parallel restructuring of the trajectory code has been performed on both
shared memory [15] and distributed-memory [16-19] machines. Shared-memory
parallel architectures have the characteristic of sharing a common large memory
among a few powerful (and expensive) processors. Because of this, shared-mem-
ory machines are equally suitable for coarse and fine grain [20] parallelism. At
the same time, they can usually vectorize (i.e. they have segmented functional
units which allow a pipelining (temporal parallelism) of vector and matrix
elements while undergoing the same operation). Distributed-memory parallel
architectures host up to 10000 more processors than shared memory machines.
Each processor has direct access only to its local memory. Cooperation with
other processors (spatial parallelism) is obtained via message passing on the
communication network. Obviously, processors of distributed-memory machines
are less powerful than those of shared memory machines and because Of their
simplicity can be produced using cheap VLSI technologies. In the case of
cpu-intensive and limited-memory applications, distributed memory architectures
do not run into computational bottlenecks. On the contrary, problems may arise
when dealing with highly coupled problems and fine grain parallelism. However,
recently, they have also been used for handling complex accurate 3D reactive
scattering computational procedures [21].

Vibrationally state-to-state but rotationally summed and averaged rate con-
stants for an atom-diatom system of reduced mass # are defined as:

2 3/2 ~.] (2j + 1)e-EJ/kTro'

kv.v,(Ttr, Trot) _ j=0 (k3T~,r~) 1/2OR(Tro,)

× ~ fo °~ Etre-F~'r/krtrcr~'VT(Etr) dE, r (3)
j ' =0

where a~{'VT(E,~) is the reactive cross section at the collision energy E,r, QR(Tro,)
is the BC rotational partition function, k is the Boltzmann constant and v,j, v' ,j '
are the vibrational and rotational numbers of reactants (unprimed) and products
(primed).

The quasiclassical estimate of the rate constant can be obtained from Eq. (3)
once the quasiclassical value of the state-to-state cross section has been calcu-
lated by integrating a sufficient number of classical trajectories. The quasiclassi-
cal cross section is defined as a multidimensional integral over all the possible
atom-diatom initial situations that can be evaluated using Monte Carlo tech-
niques [1, 22-24]. As a result, the detailed state-to-state cross section can be
written as:

O.v~,v'J'(Etr) Tcb 2ax
- f~J,~7 (4)

N i=l
where bmax is the maximum value of the impact parameter considered for
calculating the N trajectories andf~j,o~ is a Boolean function valued 1 if the result
of integrating the ith trajectory having initial vibrotational vj state can be boxed
into the final vibrotational v f state and 0 otherwise. The index i is the trajectory
sequential number which also labels the set of initial conditions. Initial condi-
tions are derived by an adequate subset of numbers out of a pseudorandom
sequence. They specify the initial geometry of the triatom and the way energy is

326 A. Lagan~ et al.

partitioned among its various degrees of freedom. The task of generating a
pseudorandom distribution is usually assigned to a specific routine that starting
from a given integer (seed) generates a real number in the interval 0-1 and a new
seed. To make the set of integrated trajectories reproducible (i.e. to make unique
the correspondence between the value of initial conditions and the trajectory
index i), the generation of the pseudorandom number series has to be strictly
sequential.

To determine the value of the Boolean function or, in other words, to
generate the value of v~/', the equation of motions which determine the evolution
in time of the reactive system have to be integrated. The section of the code
performing this integration is a completely independent computational task. This
means that, in principle, this section can be split into N parallel processes giving
a typical example of high potential parallelism.

On the machines used for production runs both temporal and spatial
parallelism can be exploited. Temporal parallelism is obtained by carrying out
vector restructuring. A way of exploiting the temporal parallelism in atom-
diatom trajectory calculations has been discussed in Ref. [25] by considering the
vector of the 12N phase space points associated with the N trajectories to be
integrated. As an alternative, our approach tends to exploit both temporal and
spatial parallelism. The temporal parallelism is taken care of by the vector
facility. To this purpose vector and matrix manipulations have been rearranged
to optimize the vector speedup. For the same reason a more suitable functional
representation of the potential energy surface was adopted [26] and use was
made of the appropriate library routines.

The spatial parallelism was exploited only on the IBM 3090 by making use
of the Parallel Fortran (PF) compiler [27] managed by the MVS/XA operating
system [28]. The PF is an extension of the language and library routines of
version 2.1 of the Fortran VS compiler. The application was restructured as a set
of distinct processes each one considered as a working unit to be executed on a
Fortran processor. Each unit is assigned to a MVS task when using the
MVS/XA operating system or to a virtual processor of a virtual machine when
using the operating system VM/XA. MVS tasks and virtual processors compete
with all other active tasks to get access to real processors. Under PF both
implicit and explicit parallelism can be activated. Implicit parallelism is exploited
by invoking the appropriate compiling options activating automatic paralleliza-
tion functions. Automatic parallelization applies only to inhibitor-free DO loops
whose parallel execution is more convenient than a sequential or a vector one.
Explicit parallelism can be activated directly by the user by inserting appropriate
explicit primitives in the program operating at instruction, DO loop and sub-
routine level. Locking and synchronization routines are provided as library
extensions. To carry out a hot-spot analysis use can be made of the Interactive
Debugging (IAD) [29]. The IAD, in fact, contains not only debugging functions
but also functions supplying information about cpu time consumption at main,
subroutine and instruction level. This has the advantage of singling out the
sections of the code on which concentrate the restructuring work. Additional
support to the restructuring work can be given by the use of the Intercompilation
Analysis (ICA) option to check compatibility between program units and obtain
information about common blocks, calls to functions and subroutines, use of
variables, etc.

There are no general recipes for carrying out a successful parallelization.
Automatic parallelization requires no restructuring work, but in return quite

D + D 2 Quasiclassical rate constant calculations on parallel computers 327

often gives negligible or no speedup. The introduction of explicit parallelism is,
therefore, indispensable for reducing computing time even if the price to be paid
is, in general, a loss of the program portability. The introduction of parallelism,
however, must be such that the per processor efficiency is not compromised.

A hot-spot analysis of the program has confirmed that the time consuming
section of the code is that integrating Hamilton equations to determine the final
value of v~]' for each trajectory. For this reason, the restructuring work was
concentrated on transforming that section of the program into a routine (TRAJ).
Related common blocks were reorganized into two different sets according to the
role they play in the parallel task: sharing commons for input and output
operations and copying commons for input operations only. Copying commons
are copied into the address space of the parallel task executing the TRAJ routine
before starting its execution. Sharing commons are broadcasted every time the
calculation associated with the parallel task comes to an end. Synchronization is
performed both to access sharing commons and at the end of the DO loop
running over the trajectory index before performing the final analysis of the
results.

Main program

CALL PROCS(Kparal)
DO I = 1, Kparal

ORIGINATE ANY TASK TASKID
END DO

Read input data and evaluate constants of common use
Seed = Initiator
Vector of seeds generation
Partition of the trajectories among generated Fortran processors

DO I = Initj, Ifinj, Igrain
Generate a pseudorandom number and a new Seed
SCHEDULE ANY TASK TASKID
SHARING (globally shared common areas)
COPYINGI (common areas mapped into the address space of the

called subroutine)
CALLING TRAJ (I,Igrain)

END DO

WAIT FOR ALL TASKS

Statistical analysis

END Main Program

328

Subroutine TRAJ

A. Lagan~. et al.

DO I = 1, Igrain
DO J = 1, Icond

Generate the j th initial condition
Generate a pseudorandom number and a new seed

END DO
Integrate trajectory differential equations
Evaluate product properties
Update the statistical analysis

END DO
END Subroutine TRAJ

In the program the variables Initj, Ifinj, Igrain and Icond specify the initial,
final, subset dimension of the trajectories to be integrated and the number of initial
conditions to be defined. As a result of the restructuring, the parallelized part of
the code amounts to about 85%. The following speedups have been obtained on
a dedicated IBM 3090/400 VF by imposing the explicit parallelism: 2.76 for three
processors, 1.99 for two processors. Such a result clearly confirms the high
potential parallelism of trajectory calculations.

3. An implementation on distributed-memory architectures

As already mentioned, the program was also implemented on two distributed
memory parallel architectures: a NCUBE/10 hypercube with 512 processors and
a small MEIKO Computing Surface with 8 Transputers. Main features of the
NCUBE machine are [30]: The machine has a hypercube architecture made of 2 p
nodes each hosting a 32 bit custom processor and six DRAM chips for a total
of 512 kbytes. Each node sits at the vertex of a p-dimensional cube and has direct
links to p other processors (p is the dimension of the hypercube). Each node is
given a p-bit binary address (Gray code). Addresses of neighbouring (connected
by a direct physical link) nodes differ by a single digit (the differing bit gives the
dimension along which the two nodes are connected). If needed, the hypecube can
be divided into subcubes of smaller dimensions. Main features of the Computing
Surface are [31]: The machine has an extensible network of computing elements.
Each computing element has a 32 bit processor, a 1 Megabyte memory and 4 full
duplex links. Communications to the System Supervisor and the management of
the network are taken care by intelligent interfaces.

To structure the program for the distributed environment we have adopted on
both machines a task farm model of cooperation consisting of a master program
running on one processor and controlling a set of identical worker processors all
executing the same code. As shown by the following scheme:

Master processor program

Read input data from file and do initializations
Broadcast initial data to all (P) worker processes

D + D 2 Quasiclassical rate constant calculations on parallel computers 329

Ntraject = Initj
Seed = Initiator

FOR Pworker = 0 to P-1 DO
CALL RANDOM(Seed, New seed, Rand)
SEND (Ntraject, Seed) to Pworker
Ntraject = Ntraject + 1
Seed = New_ seed

NEXT Pworker

WHILE Ntraject ~< Ifinj DO
CALL RANDOM(Seed, New_seed, Rand)
RECEIVE msg of type msgdone from worker M
SEND (Ntraject, Seed) to worker M
Ntraject = Ntraject + 1
Seed = New_ seed

E N D _ W H I L E

FOR Pworker = 0 to P - 1 DO
RECEIVE msg of type msgdone from worker M
SEND to worker M a msg of type msgend

NEXT Pworker

Receive statistical indicators
Perform statistical analysis
Write results on file
END Master Processor Program

the master processor executes the preliminary calculations of the main program,
dispatches trajectory integrations to the worker processors, collects final results
and performs the final statistical analysis. To optimize the load balancing, a
self-scheduling method assigning only one trajectory at a time to each worker
processor has been adopted.

As shown by the following scheme:

Worker program

Receive initial data from master and do initializations

End = False

WHILE End = False DO
RECEIVE Msg of any type from master
IF Msgtype = Msgend T H E N End = True

ELSE
Use random seed received to generate other random quantities
Integrate the trajectory and update statistical indicators
SEND MSG of type Msgdone to host

E N D _ W H I L E

Receive statistical indicators from higher dimension nodes
Combine received and local statistical indicators
Send combined results to the lower dimension node
END Worker Processor Program

330 A. Lagan~. et al.

each worker processor, starting from the seed received from the master, gener-
ates the trajectory initial conditions, integrates motion equations, evaluates final
quantum numbers and updates local statistical indicators. Once that all the N
trajectories have been integrated, the worker processors cooperate to combine
local statistical information into the global statistical quantities. These quantities
are then sent to the master.

Also for distributed memory machines the FORTRAN common blocks had
to be deeply reorganized. As a result, only four common blocks were left: two
containing the real and integer variables storing initial conditions and data (these
are broadcasted by the master processor to all worker processors at the begin-
ning of the execution) and two others containing real and integer statistical
indicators (these are sent by the worker processor to the master at the end of the
trajectory integration).

For both shared- and distributed-memory machines the pseudorandom se-
quence generation had to be restructured. In a scalar run, the correspondence
between the elements of the pseudorandom sequence and the value of the
trajectory initial conditions is uniquely determined because one trajectory at a
time is calculated. As a consequence, any change in time-length of a part of the
program will not affect the correspondence between elements of the pseudo-
random sequence and the value of initial conditions. On the contrary, on a
parallel machine, the competition between different processors may alter the
order in which trajectory requests for pseudorandom numbers are issued and,
therefore, result in different sets of initial conditions. To make the assignment
deterministic, we kept the generation of the first pseudorandom number of each
trajectory from the existing seed (i.e. from the initiator or the seed generated by
the previous call to the random generator) at the master processor level. As a
consequence, the generation being strictly sequential is uniquely determined. The
generation of all the subsequent pseudorandom numbers needed to generate the
remaining initial conditions characterizing a given trajectory, is carried out at the
level of the worker process carrying out the integration of the motion equations.
Therefore, also the rest of sequence is generated in a strictly sequential way.

On the NCUBE, particular care was also paid to further reduce communica-
tions between the host and the worker nodes. To this purpose, the procedure for
collecting trajectory results and carrying out the final statistical analysis was
redesigned. To do this, use was made of the so-called dimensional collapsing
algorithm [32]. Accordingly, rather than sending node partial results directly to
the host, these were transferred in parallel from all worker nodes of a given level
to the nodes of the next lower level in the same dimension. This process is
repeated until node 0 is reached and, from it, results are transferred to the host.
A more detailed description of the restructuring technique, speedup evaluation
methods and parameters as well as a collection of data concerning the measured
efficiency of the trajectory program on NCUBE machines, is given elsewhere
[24]. Average computer times measured for integrating one trajectory are:
92 s, 5.8 s, 2.9 s, 1.5 s, 0.75 s, 0.39 s, and 0.23 s for a NCUBE/10 machine
having respectively, 1, 16, 32, 64, 128, 256, and 512 processors. For a Meiko
Computing Surface having respectively 1, 4, and 7 worker processors, related
times are: 21 s, 5.3s, and 3.1 s. These results clearly show that trajectory
calculations are perfectly scalable on distributed memory parallel machines. In
other words, these machines are almost insensitive to an increase of the number
of trajectories to be calculated provided that the number of processors is
proportionally increased.

D + D 2 Quasic lass ica l ra te cons tan t ca lcu la t ions on para l le l compute r s 331

4. The D + D 2 deexcitation rate constants

Quasiclassical trajectories were run on the same LSTH potential energy surface
[33] used for calculations of Ref. [1]. For a given set of Ttr and Tro t values, at low
v levels we ran about 6000 trajectories by setting bma x at 3 A. However, because
the interval of fully reactive impact parameters increases with the vibrational
number, the value of bma x w a s gradually increased with v. The number of
calculated trajectories was increased accordingly. For practical reasons, as for
Eq. (1), several jobs of about half an hour rather than a few very long ones, were
submitted. Each job was devoted to the calculation of one set of fixed v, Ttr and
Trot kv,~,(Ttr, Trot) rate constants.

For illustrative purposes, rate constant values (in units of
10 -12 cm 3 molecule -1 s -1) calculated at Ttr = 4000 K Trot = 500 K are shown in
Fig. 1. For the sake of clarity, rate constant values belonging to the same initial
vibrational state are connected by straight lines. As a result, each curve shows
the variation of the efficiency of vibrational deexcitation process as the gap
between the reactant and product vibrational number increases. All curves show
an increasing trend for low n values. Then, after reaching a maximum, they
decrease almost linearly. Up to v = 5, the most favoured deexcitation process is
that to the next lower product state. When vibrational energy increases, the most
efficient deexcitation process is the one leading to v ' = v - 2 .

A comparison with results of the H + H2 reaction shows that isotopic
changes are quite effective in damping vibrational deexcitation effects. In fact,
rate constant values calculated for the reaction H + H 2 at the same translational
and rotational temperatures are larger than those of D 2 because of the smaller
reduced mass of the H + HE reaction. This results in a less efficient redistribution
of the reactant vibrational energy into that of products. This effect is emphasized
by the fact that, because of the smaller energy spacing between D2 vibrational
levels, the same vibrational level has less vibrational energy to redistribute in a
reactive collision. The regular shape of the curves reported in the figure confirms
also that if rate constant values are plotted, as in our case, as a function of n, the
shape of the curve is smooth and can be easily parameterized.

~7

110 ;--'".,..
/ , : '-,",,
I i i , . . ".. l i i l "ix \.x x..

~, 70~///~ \~ .,, \..\
/ / \ \ "\. •

3> "Xi , .., ..,.

>" 3 0 - "" \"
I I ~

0 3 6 9
n

Fig. 1. Quas idas s i ca l ra te cons tan t s
k(v, v ' = v - n) (in uni ts o f 10 -12 cm 2

molecule -1 s -]) p lo t ted as a funct ion of

the v ib ra t iona l j u m p n at Ttr = 4000 K

and Tro t = 500 K. Only ini t ia l odd
v ib ra t iona l number s are repor ted in the
range v = 9 (uppe r curve, dashed double
dotted line) - v = 3 (lower curve, solid
line). Connec t ing lines have been d rawn
on ly for sake of c lar i ty

332 A. Lagan/t et al.

5. Conclusions

The increasing need for massive trajectory calculations associated both with
basic investigation of elementary chemical processes and with complex chemical
systems modeling, can be satisfied only by making use of parallel computer
architectures. In our case, the trajectory code calculating atom-diatom reactive
rate constants restructured to run on both shared- and local-memory parallel
computers, was used for evaluating rate constants of the D + D2 reaction.
Production runs, performed on the shared-memory IBM 3090/400 VF machine,
allowed us to calculate all the rate constants needed to evaluate the efficiency of
vibrational deexcitation for this reaction. Restructuring for the IBM 3090 was
carried out by making use of the PF compiler. Other utilities designed to single
out the most intensive computing parts of the application and to help the writing
of cooperating computational tasks were also used. Significant parallel speedups
were obtained by treating the trajectory integration as an independent task and
dispatching its calculation to the different processors. The program was also
restructured to run on a distributed memory computer. This was performed by
copying into the worker nodes the trajectory integration routine. To minimize
the amount of computational work assigned to the host, the generation of the
initial conditions and the (partial) final statistical analysis were also transferred
to the worker processors. In doing this, attention was paid to keep the genera-
tion of the initial conditions reproducible for different runs. A final effort has
been dedicated to the efficient collection of results by using the dimensional
collapsing algorithm.

A comparison of speedups obtained on shared and distributed memory
parallel computers shows that comparable performances can be obtained when
distributed memory machines can make use of a few hundred processors.
Therefore, to carry out a reactive cross section calculation for the range of initial
conditions we need to model H - sources, machines with 10 or 100 more
processors will be needed.

Acknowledgements. We wish to thank M. Capitelli for stimulating the investigation of the H + H 2
reaction. Thanks are also due to DELPHI (Viareggio, I), NCUBE (Portland, OR, USA), ACS
MEIKO (Milano, I), CRAY (Spain) and CNUSC (Montpellier, F) for assistance and providing
computer time. Partial financial support from C N R within the Progetto Finalizzato Sistemi Infor-
matici e Calcolo Parallelo is acknowledged.

References

1. Lagan/t A, Garcia E, Mateos J (1991) Chem Phys Lett 176:273
2. Schatz GC (1986) In: Clary DC (ed) The theory of chemical reaction dynamics. Reidel,

Dordrecht, p 1
3. Pack RT, Parker GA (1987) J Chem Phys 87:3888
4. Cuccaro SA, Kuppermann A (1989) Chem Phys Lett 154:155
5. Webster F, Light JC (1989) J Chem Phys 90:300
6. Linderberg J, Padkjaer S, Ohrn Y, Vessal B (1989) J Chem Phys 90:6254
7. Cuccaro SA, Kuppermann A (1989) Chem Phys Lett 157:440
8. Zhang JZH, Miller WH (1989) Chem Phys Lett 159:130
9. Manulopoulos DE, Wyatt RE (1989) Chem Phys Lett 159:519

10. Hancock G, Mead CA, Truhlar DG, Varandas AJC (1989) J Chem Phys 91:3492
11. Launay JM, Le Dourneuf ML (1989) Chem Phys Lett 163:178

D + D 2 Quasiclassical rate constant calculations on parallel computers 333

12. Hiskes JR, Karo AM (1984) J Appl Phys 56:1827
13. Gorse C, Capitelli M, Bacal M, Bretagne J, Lagan~t A (1987) Chem Phys 117:177
14. Celiberto R, Cives P, Cacciatore M, Capitelli M, Lamanna U (1990) Chem Phys Lett 169:697
15. Hockney RW (1981) Parallel computers: architecture, programming and algorithms. Arrow-

smith, Bristol
16. Seitz CL, Matisoo J (1984) Phys Today 37:38
17. Fox GC, Otto SW (1984) Phys Today 37:50
18. Fox GC, Lyzenga GA, Rogstad D, Otto S (1985) The Caltech Concurrent Computation

Program Project Description. Proc 1985 ASME International Computers in Engineering Confer-
ence

19. Krishnamurthy EV (1989) Parallel processing: principles and practice. Addison-Wesley, Sydney
20. Gentzsch W, Szelenyi F, Zecca U (1988) Parallel Comput 9:107
21. Wu YM, Cuccaro SA, Hipes PG, Kuppermann A (1990) Chem Phys Lett 168:429
22. Bunker DL (1971) Methods Comput Phys 10:287
23. Alvarifio JM, Garcia E, Lagan~ A (1989) In: Lagan~i A (ed) Supercomputer algorithms for

reactivity, dynamics and kinetics of small molecules. Kluwer, Dordrecht, p 383
24. Baraglia R, Ferrini R, Laforenza D, Perego R, Laganh A, Gervasi O (1990) High Speed

Computing (submitted)
25. Cochrane L, Truhlar DG (1988) Parallel Comput 6:63
26. Garcia E, Ciccarelli L, Lagan~t A (1987) Theor Chim Acta 72:253
27. Parallel Fortran Language and Libraries Reference. IBM Order No SC23-0431
28. MVS/XA General Information Manual IBM Order No GC28-1118
29. VS FORTRAN Version 2 Interactive Debug Guide and Reference, IBM Order No SC26-4223
30. Hayes JP, Mudge TN, Stout QF (1986) Architecture of a Hypercube Supercomputer. In:

Proceedings of the 1986 International Conference on Parallel Processing, IEEE Computer
Society Press, Washington, p 653

31. INMOS Ltd (1985) Transputer Reference Manual, INMOS
32. Gustafson JL, Montry GR, Benez RE (1988) SIAM J Sci Stat Comp 9:609
33. Truhlar DG, Horowitz CJ (1978) J Chem Phys 68:2468

