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Summary. The calculation of  rate constant values of the H + / / 2  reaction for an 
extended range of excited vibrational states of the diatomic molecule and 
temperatures is relevant to the modeling of  H -  sources. To investigate the effect 
of  isotopic substitutions on the efficiency of vibrational deexcitation processes, 
we extended the calculations to the D + D2 system. These calculations were 
carried out using a program restructured to run on a shared memory vector and 
parallel computer. The dependence of the efficiency of vibrational deexcitation 
processes from both the initial vibrational state and temperature of  reactants is 
reported. Restructuring strategies adopted for implementing the program on 
both shared and distributed memory computers as well as speedups achieved on 
both types of machines are also discussed. 
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1. Introduction 

Recently, we presented an extensive quasiclassical trajectory study of the reactive 
vibrational deexcitation for [1]: 

H + H2(v,j) --*H2(v',j' ) + n (1) 

In fact, although significant theoretical effort has been paid to the investigation 
of  this system [2-11], still very little is known about the efficiency of reactive 
deexcitation when the hydrogen molecule is vibrationally excited. Vibrational 
deexcitation of  H 2 by collision with H atoms plays an important role in 
determining the efficiency of negative hydrogen ion sources. Vibrational deexcita- 
tion, in fact, competes with the H -  production mechanism (a dissociative 
electron attachment to vibrationally excited hydrogen molecules) [12-14]. In a 
simplified modeling of  the H -  source, the assumption that rotational (Trot) and 
translational (T,r) temperatures of plasma particles have the same value T, is 
usually made. For  this reason, rate constants for Eq. (1) were first calculated for 
T ranging from 300 K to 4000 K and up to very high v values [13]. The 
calculations showed that, in the investigated range of  temperature, deexcitation 
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to the next lower vibrational level is the most efficient process. They also showed 
that a temperature increase makes the rate constant larger and that deexcitation 
rate constant values can be parameterized as a function of  the vibrational jump 
n (n = v  - v ' ) .  

For  a more realistic modeling of  the H -  sources, Tro~ and T,r need not have 
the same value. For  this reason, the H +/-/2 calculations of  Ref. [1] were made 
at different combinations of Tro~ and T~ values. The calculated rate constants 
showed that the two temperatures play an opposite role: the rotational temper- 
ature enhances the efficiency of  the deexcitation processes, while the transla- 
tional temperature favours adiabatic processes at the expense of  vibrational 
deexcitation. 

Another important element that a realistic modeling of the H -  sources 
should include is the effect of  isotopic variations. For  this reason, we investi- 
gated: 

D + D2(v,j ) ~D2(v ' , j ' )  + D (2) 

In this case too, there is no possibility of getting from the experiment all the 
necessary information. This means that the use of  extended calculations (as a 
numerical substitute of  the experiment) is, again, the only viable means of  
providing a complete set of  rate constant values. At low v values, a few 
thousand trajectories are usually needed to obtain a reasonably converged 
estimate of  the reactive atom-diatom cross section. To have a statistically 
significant sample of  collisions, this number has to become larger when either 
the reactant vibrational number or the temperature increases. The number of  
trajectories to be calculated has to be further increased when rate constants 
rather than cross sections have to be calculated. That means that a minimum of  
5nvnrronr, r 10 3 trajectories (where nv, nTro ,, and nTt r a r e  the number of  vibra- 
tional states, rotational and translational temperatures considered) has to be 
calculated. 

For  calculating the H + H 2 rate constant values reported in Ref. [1] a 
number of  trajectories of  the order of  106 had to be integrated. To extend the 
investigation to Eq. (2) the number of  calculated trajectories was increased 
significantly. This is due to two main reasons: The narrower vibrational spacing 
of  the D2 molecule and the larger maximum impact parameter bmax. In fact, 
because of  the narrower vibrational spacing, D2 has about 50% more vibra- 
tional levels than H 2. In addition, to have about the same number of  trajecto- 
ries for each interval of b regardless of the value of b . . . .  the number of 
calculated trajectories was increased when considering higher internal energy 
levels. 

Therefore, with even stronger motivations than for Eq. (1), we turned 
to parallel computers to carry out the planned investigation. In view of  
future similar (or  computationally more intensive) work, the trajectory pro- 
gram was implemented also on parallel machines other than those used 
for production runs. Production runs were carried out on IBM and CRAY 
supercomputers; test runs were performed also on NCUBE and MEIKO 
machines. 

The paper is organized as follows: Parallel features of  the numerical ap- 
proach and speedups obtained on shared-memory machines after parallel re- 
structuring are given in Sect. 2. Parallel restructuring for distributed-memory 
architectures is discussed in Sect. 3. Rate constant values calculated for Eq. (2) 
are discussed in Sect. 4. 
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2. Parallelism in trajectory codes 

The parallel restructuring of the trajectory code has been performed on both 
shared memory [ 15] and distributed-memory [ 16-19] machines. Shared-memory 
parallel architectures have the characteristic of sharing a common large memory 
among a few powerful (and expensive) processors. Because of this, shared-mem- 
ory machines are equally suitable for coarse and fine grain [20] parallelism. At 
the same time, they can usually vectorize (i.e. they have segmented functional 
units which allow a pipelining (temporal parallelism) of vector and matrix 
elements while undergoing the same operation). Distributed-memory parallel 
architectures host up to 10000 more processors than shared memory machines. 
Each processor has direct access only to its local memory. Cooperation with 
other processors (spatial parallelism) is obtained via message passing on the 
communication network. Obviously, processors of distributed-memory machines 
are less powerful than those of shared memory machines and because Of their 
simplicity can be produced using cheap VLSI technologies. In the case of 
cpu-intensive and limited-memory applications, distributed memory architectures 
do not run into computational bottlenecks. On the contrary, problems may arise 
when dealing with highly coupled problems and fine grain parallelism. However, 
recently, they have also been used for handling complex accurate 3D reactive 
scattering computational procedures [21]. 

Vibrationally state-to-state but rotationally summed and averaged rate con- 
stants for an atom-diatom system of reduced mass # are defined as: 

2 3/2 ~.] (2j + 1)e-EJ/kTro' 

kv.v,(Ttr, Trot ) _ j=0 (k3T~,r~) 1/2OR(Tro,) 

× ~ fo °~ Etre-F~'r/krtrcr~'VT(Etr) dE, r (3) 
j ' =0  

where a~{'VT(E,~) is the reactive cross section at the collision energy E,r, QR(Tro,) 
is the BC rotational partition function, k is the Boltzmann constant and v,j, v' ,j '  
are the vibrational and rotational numbers of reactants (unprimed) and products 
(primed). 

The quasiclassical estimate of the rate constant can be obtained from Eq. (3) 
once the quasiclassical value of the state-to-state cross section has been calcu- 
lated by integrating a sufficient number of classical trajectories. The quasiclassi- 
cal cross section is defined as a multidimensional integral over all the possible 
atom-diatom initial situations that can be evaluated using Monte Carlo tech- 
niques [1, 22-24]. As a result, the detailed state-to-state cross section can be 
written as: 

O.v~,v'J'(Etr) Tcb 2ax 
- f~J,~7 (4) 

N i=l 
where bmax is the maximum value of the impact parameter considered for 
calculating the N trajectories andf~j,o~ is a Boolean function valued 1 if the result 
of integrating the ith trajectory having initial vibrotational vj state can be boxed 
into the final vibrotational v f  state and 0 otherwise. The index i is the trajectory 
sequential number which also labels the set of initial conditions. Initial condi- 
tions are derived by an adequate subset of numbers out of a pseudorandom 
sequence. They specify the initial geometry of the triatom and the way energy is 
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partitioned among its various degrees of freedom. The task of generating a 
pseudorandom distribution is usually assigned to a specific routine that starting 
from a given integer (seed) generates a real number in the interval 0-1 and a new 
seed. To make the set of integrated trajectories reproducible (i.e. to make unique 
the correspondence between the value of initial conditions and the trajectory 
index i), the generation of the pseudorandom number series has to be strictly 
sequential. 

To determine the value of the Boolean function or, in other words, to 
generate the value of v~/', the equation of motions which determine the evolution 
in time of the reactive system have to be integrated. The section of the code 
performing this integration is a completely independent computational task. This 
means that, in principle, this section can be split into N parallel processes giving 
a typical example of high potential parallelism. 

On the machines used for production runs both temporal and spatial 
parallelism can be exploited. Temporal parallelism is obtained by carrying out 
vector restructuring. A way of exploiting the temporal parallelism in atom- 
diatom trajectory calculations has been discussed in Ref. [25] by considering the 
vector of the 12N phase space points associated with the N trajectories to be 
integrated. As an alternative, our approach tends to exploit both temporal and 
spatial parallelism. The temporal parallelism is taken care of by the vector 
facility. To this purpose vector and matrix manipulations have been rearranged 
to optimize the vector speedup. For the same reason a more suitable functional 
representation of the potential energy surface was adopted [26] and use was 
made of the appropriate library routines. 

The spatial parallelism was exploited only on the IBM 3090 by making use 
of the Parallel Fortran (PF) compiler [27] managed by the MVS/XA operating 
system [28]. The PF is an extension of the language and library routines of 
version 2.1 of the Fortran VS compiler. The application was restructured as a set 
of distinct processes each one considered as a working unit to be executed on a 
Fortran processor. Each unit is assigned to a MVS task when using the 
MVS/XA operating system or to a virtual processor of a virtual machine when 
using the operating system VM/XA. MVS tasks and virtual processors compete 
with all other active tasks to get access to real processors. Under PF both 
implicit and explicit parallelism can be activated. Implicit parallelism is exploited 
by invoking the appropriate compiling options activating automatic paralleliza- 
tion functions. Automatic parallelization applies only to inhibitor-free DO loops 
whose parallel execution is more convenient than a sequential or a vector one. 
Explicit parallelism can be activated directly by the user by inserting appropriate 
explicit primitives in the program operating at instruction, DO loop and sub- 
routine level. Locking and synchronization routines are provided as library 
extensions. To carry out a hot-spot analysis use can be made of the Interactive 
Debugging (IAD) [29]. The IAD, in fact, contains not only debugging functions 
but also functions supplying information about cpu time consumption at main, 
subroutine and instruction level. This has the advantage of singling out the 
sections of the code on which concentrate the restructuring work. Additional 
support to the restructuring work can be given by the use of the Intercompilation 
Analysis (ICA) option to check compatibility between program units and obtain 
information about common blocks, calls to functions and subroutines, use of 
variables, etc. 

There are no general recipes for carrying out a successful parallelization. 
Automatic parallelization requires no restructuring work, but in return quite 
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often gives negligible or no speedup. The introduction of explicit parallelism is, 
therefore, indispensable for reducing computing time even if the price to be paid 
is, in general, a loss of the program portability. The introduction of parallelism, 
however, must be such that the per processor efficiency is not compromised. 

A hot-spot analysis of the program has confirmed that the time consuming 
section of the code is that integrating Hamilton equations to determine the final 
value of v~]' for each trajectory. For this reason, the restructuring work was 
concentrated on transforming that section of the program into a routine (TRAJ). 
Related common blocks were reorganized into two different sets according to the 
role they play in the parallel task: sharing commons for input and output 
operations and copying commons for input operations only. Copying commons 
are copied into the address space of the parallel task executing the TRAJ routine 
before starting its execution. Sharing commons are broadcasted every time the 
calculation associated with the parallel task comes to an end. Synchronization is 
performed both to access sharing commons and at the end of the DO loop 
running over the trajectory index before performing the final analysis of the 
results. 

Main program 

CALL PROCS(Kparal) 
DO I = 1, Kparal 

ORIGINATE ANY TASK TASKID 
END DO 

Read input data and evaluate constants of common use 
Seed = Initiator 
Vector of seeds generation 
Partition of the trajectories among generated Fortran processors 

DO I = Initj, Ifinj, Igrain 
Generate a pseudorandom number and a new Seed 
SCHEDULE ANY TASK TASKID 
SHARING (globally shared common areas) 
COPYINGI (common areas mapped into the address space of the 

called subroutine) 
CALLING TRAJ (I,Igrain) 

END DO 

WAIT FOR ALL TASKS 

Statistical analysis 

END Main Program 
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Subroutine TRAJ 
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DO I = 1, Igrain 
DO J = 1, Icond 

Generate the j th  initial condition 
Generate a pseudorandom number and a new seed 

END DO 
Integrate trajectory differential equations 
Evaluate product properties 
Update the statistical analysis 

END DO 
END Subroutine TRAJ 

In the program the variables Initj, Ifinj, Igrain and Icond specify the initial, 
final, subset dimension of the trajectories to be integrated and the number of initial 
conditions to be defined. As a result of the restructuring, the parallelized part of 
the code amounts to about 85%. The following speedups have been obtained on 
a dedicated IBM 3090/400 VF by imposing the explicit parallelism: 2.76 for three 
processors, 1.99 for two processors. Such a result clearly confirms the high 
potential parallelism of trajectory calculations. 

3. An implementation on distributed-memory architectures 

As already mentioned, the program was also implemented on two distributed 
memory parallel architectures: a NCUBE/10 hypercube with 512 processors and 
a small MEIKO Computing Surface with 8 Transputers. Main features of the 
NCUBE machine are [30]: The machine has a hypercube architecture made of 2 p 
nodes each hosting a 32 bit custom processor and six DRAM chips for a total 
of 512 kbytes. Each node sits at the vertex of a p-dimensional cube and has direct 
links to p other processors (p is the dimension of the hypercube). Each node is 
given a p-bit binary address (Gray code). Addresses of neighbouring (connected 
by a direct physical link) nodes differ by a single digit (the differing bit gives the 
dimension along which the two nodes are connected). If  needed, the hypecube can 
be divided into subcubes of smaller dimensions. Main features of the Computing 
Surface are [31]: The machine has an extensible network of computing elements. 
Each computing element has a 32 bit processor, a 1 Megabyte memory and 4 full 
duplex links. Communications to the System Supervisor and the management of 
the network are taken care by intelligent interfaces. 

To structure the program for the distributed environment we have adopted on 
both machines a task farm model of cooperation consisting of a master program 
running on one processor and controlling a set of identical worker processors all 
executing the same code. As shown by the following scheme: 

Master processor program 

Read input data from file and do initializations 
Broadcast initial data to all (P) worker processes 
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Ntraject = Initj 
Seed = Initiator 

FOR Pworker = 0 to P-1 DO 
CALL RANDOM(Seed,  New seed, Rand) 
SEND (Ntraject, Seed) to Pworker 
Ntraject = Ntraject + 1 
Seed = New_ seed 

NEXT Pworker  

WHILE Ntraject ~< Ifinj DO 
CALL RANDOM( Seed, New_seed, Rand) 
RECEIVE msg of type msgdone from worker M 
SEND (Ntraject, Seed) to worker M 
Ntraject = Ntraject + 1 
Seed = New_ seed 

E N D _ W H I L E  

FOR Pworker = 0 to P - 1 DO 
RECEIVE msg of  type msgdone from worker M 
SEND to worker M a msg of type msgend 

NEXT Pworker 

Receive statistical indicators 
Perform statistical analysis 
Write results on file 
END Master Processor Program 

the master processor executes the preliminary calculations of  the main program, 
dispatches trajectory integrations to the worker processors, collects final results 
and performs the final statistical analysis. To optimize the load balancing, a 
self-scheduling method assigning only one trajectory at a time to each worker 
processor has been adopted. 

As shown by the following scheme: 

Worker program 

Receive initial data from master and do initializations 

End = False 

WHILE End = False DO 
RECEIVE Msg of  any type from master 
IF Msgtype = Msgend T H E N  End = True 

ELSE 
Use random seed received to generate other random quantities 
Integrate the trajectory and update statistical indicators 
SEND MSG of  type Msgdone to host 

E N D _ W H I L E  

Receive statistical indicators from higher dimension nodes 
Combine received and local statistical indicators 
Send combined results to the lower dimension node 
END Worker Processor Program 



330 A. Lagan~. et al. 

each worker processor, starting from the seed received from the master, gener- 
ates the trajectory initial conditions, integrates motion equations, evaluates final 
quantum numbers and updates local statistical indicators. Once that all the N 
trajectories have been integrated, the worker processors cooperate to combine 
local statistical information into the global statistical quantities. These quantities 
are then sent to the master. 

Also for distributed memory machines the FORTRAN common blocks had 
to be deeply reorganized. As a result, only four common blocks were left: two 
containing the real and integer variables storing initial conditions and data (these 
are broadcasted by the master processor to all worker processors at the begin- 
ning of the execution) and two others containing real and integer statistical 
indicators (these are sent by the worker processor to the master at the end of the 
trajectory integration). 

For both shared- and distributed-memory machines the pseudorandom se- 
quence generation had to be restructured. In a scalar run, the correspondence 
between the elements of the pseudorandom sequence and the value of the 
trajectory initial conditions is uniquely determined because one trajectory at a 
time is calculated. As a consequence, any change in time-length of a part of the 
program will not affect the correspondence between elements of the pseudo- 
random sequence and the value of initial conditions. On the contrary, on a 
parallel machine, the competition between different processors may alter the 
order in which trajectory requests for pseudorandom numbers are issued and, 
therefore, result in different sets of initial conditions. To make the assignment 
deterministic, we kept the generation of the first pseudorandom number of each 
trajectory from the existing seed (i.e. from the initiator or the seed generated by 
the previous call to the  random generator) at the master processor level. As a 
consequence, the generation being strictly sequential is uniquely determined. The 
generation of all the subsequent pseudorandom numbers needed to generate the 
remaining initial conditions characterizing a given trajectory, is carried out at the 
level of the worker process carrying out the integration of the motion equations. 
Therefore, also the rest of sequence is generated in a strictly sequential way. 

On the NCUBE, particular care was also paid to further reduce communica- 
tions between the host and the worker nodes. To this purpose, the procedure for 
collecting trajectory results and carrying out the final statistical analysis was 
redesigned. To do this, use was made of the so-called dimensional collapsing 
algorithm [32]. Accordingly, rather than sending node partial results directly to 
the host, these were transferred in parallel from all worker nodes of a given level 
to the nodes of the next lower level in the same dimension. This process is 
repeated until node 0 is reached and, from it, results are transferred to the host. 
A more detailed description of the restructuring technique, speedup evaluation 
methods and parameters as well as a collection of data concerning the measured 
efficiency of the trajectory program on NCUBE machines, is given elsewhere 
[24]. Average computer  times measured for integrating one trajectory are: 
92 s, 5.8 s, 2.9 s, 1.5 s, 0.75 s, 0.39 s, and 0.23 s for a NCUBE/10 machine 
having respectively, 1, 16, 32, 64, 128, 256, and 512 processors. For a Meiko 
Computing Surface having respectively 1, 4, and 7 worker processors, related 
times are: 21 s, 5.3s, and 3.1 s. These results clearly show that trajectory 
calculations are perfectly scalable on distributed memory parallel machines. In 
other words, these machines are almost insensitive to an increase of the number 
of trajectories to be calculated provided that the number of processors is 
proportionally increased. 
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4. The D + D 2 deexcitation rate constants 

Quasiclassical trajectories were run on the same LSTH potential energy surface 
[33] used for calculations of  Ref. [1]. For  a given set of  Ttr and Tro t values, at low 
v levels we ran about  6000 trajectories by setting bma x at 3 A. However, because 
the interval of  fully reactive impact parameters increases with the vibrational 
number,  the value of  bma x w a s  gradually increased with v. The number  of  
calculated trajectories was increased accordingly. For  practical reasons, as for 
Eq. (1), several jobs of  about  half an hour rather than a few very long ones, were 
submitted. Each job was devoted to the calculation of  one set of  fixed v, Ttr and 
Trot kv,~,(Ttr, Trot) rate constants. 

For  illustrative purposes, rate constant values (in units of  
10 -12 cm 3 molecule -1 s -1) calculated at Ttr = 4000 K Trot = 500 K are shown in 
Fig. 1. For  the sake of  clarity, rate constant values belonging to the same initial 
vibrational state are connected by straight lines. As a result, each curve shows 
the variation of  the efficiency of  vibrational deexcitation process as the gap 
between the reactant and product vibrational number increases. All curves show 
an increasing trend for low n values. Then, after reaching a maximum, they 
decrease almost linearly. Up to v = 5, the most  favoured deexcitation process is 
that to the next lower product state. When vibrational energy increases, the most  
efficient deexcitation process is the one leading to v ' =  v - 2 .  

A comparison with results of  the H + H2 reaction shows that isotopic 
changes are quite effective in damping vibrational deexcitation effects. In fact, 
rate constant values calculated for the reaction H + H 2 at the same translational 
and rotational temperatures are larger than those of D 2 because of  the smaller 
reduced mass of  the H + HE reaction. This results in a less efficient redistribution 
of the reactant vibrational energy into that of  products. This effect is emphasized 
by the fact that, because of the smaller energy spacing between D2 vibrational 
levels, the same vibrational level has less vibrational energy to redistribute in a 
reactive collision. The regular shape of the curves reported in the figure confirms 
also that if rate constant values are plotted, as in our case, as a function of n, the 
shape of  the curve is smooth and can be easily parameterized. 
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Fig. 1. Quas idas s i ca l  ra te  cons tan t s  
k(v, v ' =  v -  n) ( in  uni ts  o f  10 -12 cm 2 

molecule  -1 s - ] )  p lo t ted  as a funct ion  of  

the v ib ra t iona l  j u m p  n at  Ttr = 4000 K 

and  Tro t = 500 K. Only  ini t ia l  odd  
v ib ra t iona l  number s  are repor ted  in the 
range  v = 9 (uppe r  curve,  dashed double 
dotted line) - v = 3 ( lower  curve,  solid 
line). Connec t ing  lines have  been d rawn  
on ly  for sake  of  c lar i ty  



332 A. Lagan/t et al. 

5. Conclusions 

The increasing need for massive trajectory calculations associated both with 
basic investigation of elementary chemical processes and with complex chemical 
systems modeling, can be satisfied only by making use of parallel computer 
architectures. In our case, the trajectory code calculating atom-diatom reactive 
rate constants restructured to run on both shared- and local-memory parallel 
computers, was used for evaluating rate constants of  the D + D2 reaction. 
Production runs, performed on the shared-memory IBM 3090/400 VF machine, 
allowed us to calculate all the rate constants needed to evaluate the efficiency of 
vibrational deexcitation for this reaction. Restructuring for the IBM 3090 was 
carried out by making use of the PF compiler. Other utilities designed to single 
out the most intensive computing parts of the application and to help the writing 
of cooperating computational tasks were also used. Significant parallel speedups 
were obtained by treating the trajectory integration as an independent task and 
dispatching its calculation to the different processors. The program was also 
restructured to run on a distributed memory computer. This was performed by 
copying into the worker nodes the trajectory integration routine. To minimize 
the amount of computational work assigned to the host, the generation of  the 
initial conditions and the (partial) final statistical analysis were also transferred 
to the worker processors. In doing this, attention was paid to keep the genera- 
tion of  the initial conditions reproducible for different runs. A final effort has 
been dedicated to the efficient collection of  results by using the dimensional 
collapsing algorithm. 

A comparison of  speedups obtained on shared and distributed memory 
parallel computers shows that comparable performances can be obtained when 
distributed memory machines can make use of  a few hundred processors. 
Therefore, to carry out a reactive cross section calculation for the range of initial 
conditions we need to model H -  sources, machines with 10 or 100 more 
processors will be needed. 
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